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COMPLEX SYSTEMS AND HUMAN PERFORMANCE MODELING 
 

Walter Warwick 

Alion Science and Technology 

 

Laura Marusich & Norbou Buchler 

Human Research & Engineering Directorate, US Army Research Laboratory 

 

The development of a human performance model is an exercise in complexity. Despite this, techniques that 

are commonplace in the study of complex dynamical systems have yet to find their way into human 

performance modeler’s toolbox. In this paper, we describe our efforts to develop new generative and 

analytical methods within a task network modeling environment. Specifically, we present task network 

modeling techniques for generating inter-event times series typical of a complex system. We focus on 

communication patterns. In addition, we describe the associated analytical techniques needed to verify the 

time series. Again, while these analytical techniques will be familiar to the complexity scientist, they have 

significant and largely unrecognized methodological implications for the human performance modeler. 

 

 

INTRODUCTION 

 

The development of a human performance model is an 

exercise in complexity. Whether it is instantiating the various 

mechanisms that constitute a cognitive architecture or 

decomposing the work flows and resource constraints that 

characterize human-system interactions, the modeler confronts 

the challenge of representing and understanding the myriad 

interactions that drive human performance in a dynamic 

environment. Even the modeling tools themselves are 

instances of complex software systems. Despite this, 

techniques that are commonplace in the study of complex 

dynamical systems have yet to find their way into the human 

performance modeler’s toolbox.  

In this paper we describe our efforts to implement 

methods for generating and analyzing the inter-event times 

series typical of a complex system within a human 

performance modeling environment. More specifically, we 

describe how the stochastic priority-based queuing proposed 

by Barabasi (2005) to account for the heavy-tailed distribution 

of wait times in human communication patterns can be 

implemented in a task network modeling tool. Although 

queues are a basic feature in many task network modeling 

tools, the representation of Barabasi’s stochastic priority-based 

queuing is rather more subtle than it might first appear. Nor is 

it enough simply to represent the functional form of the heavy-

tailed distribution explicitly in the calculation of task times. 

Rather, our goal to demonstrate how a heavy-tailed 

distribution of wait times can emerge having re-represented 

stochastic priority-based queuing as a form of task switching. 

In this way we reconcile what some might see as the more 

recondite concepts of the complexity scientist with the more 

familiar terms of the human performance modeler. 

Given our goal to generate an emergent time series, it is 

necessary to implement analytical techniques to identify the 

functional form of the resulting distribution of wait times. 

Again, this problem is more subtle than it appears. Clauset, 

Shalizi and Newman (2009) point out that the common 

approach of simply displaying linear fits to log-log plots of the 

distribution is fraught with problems. So, following their lead, 

we have implemented general techniques for verifying power-

law distributions in data (empirical or simulated).  

Our ultimate goal in this paper is not to argue whether a 

particular aspect of human performance is best described by, 

say, a power-law or a stretched exponential or a log-normal 

distribution (cf. Anderson, 1981; Heathcote, Brown & 

Mewhort, 2000). Rather, we think it is important to understand 

the methodological implications should an aspect of human 

behavior be driven by a power law process. Our most 

immediate concern has to do with the role of computational 

modeling in predicting system performance under such a 

regime. One of the key findings emerging from network 

science is that the statistics of complex systems are “non-

normal” (West & Grigolini, 2011) while most human 

performance modeling tools assume some degree of 

“normality” in the processes they model, if not by design then 

certainly in their typical application. A model built on draws 

from normal distributions will fail to account for the extreme 

behaviors of a system that is, in fact, driven by a power-law 

process. A more fundamental concern relates to how we 

should validate models of human performance. While some 

might view questions about the exact functional form of a 

distribution as an esoteric exercise in curve fitting, the 

statistics of complex systems preclude standard measures of fit 

(and it is for this reason that arguments about the exact 

functional form of a distribution must be engaged carefully 

lest they become question begging). Last, but not least, we 

hope this research will foster stronger connections between 

human performance modeling and network science—two 

disciplines that should be tightly linked in principle but that 

are rarely integrated in practice. 

 

TRADITIONAL TASK NETWORK MODELING 

 

Task network modeling environments (e.g., IMPRINT, 

Micro Saint, C3TRACE, etc.) provide a framework for 

representing complex human-system interaction. The 

framework is grounded in the notion of a task decomposition 

in which a complex process is decomposed into component 

sub-processes, which can be further decomposed until a 

sequence of tasks can be specified. This approach is visualized 



by way of a graphical representation of the process being 

modeled: a hierarchical set of nodes and edges (i.e., tasks and 

the flow of control between them).  Beneath the graphical 

representation, a discrete event simulator schedules events and 

executes whatever additional code the modeler has included at 

the task level (e.g., code to affect state variables).  Both serial 

and parallel processes can be represented directly (see Figure 

5 below). 

The task is the atomic unit of analysis and, as such, has 

some basic properties specified by the modeler. Task duration 

is chief among these properties. By specifying a duration 

distribution for each task, the modeler provides the stochastic 

outline for the time series of events that will be simulated at 

run time. 

 

MODELING COMMUNICATIVE BEHAVIOR 

 

Barabasi (2010) argues that human communication 

patterns are “bursty”; that is, the inter-event arrival time 

between messages tends to follow a power-law distribution, 

with short intervals between many messages but potentially 

yawning gaps between others. As Figure 1 shows, there is a 

marked difference between the range of inter-event arrival 

times given a power-law process as opposed to a Poisson 

process. 

 

Barabasi claims that such patterns can be found in both 

hand-written correspondence (Oliveira & Barabasi, 2005) and 

email communications (Barabasi, 2005).  We have found 

similar patterns in other data sets. The rank-frequency plot in 

Figure 2 depicts the distribution of inter-event arrival intervals 

for roughly 2300 chat communications from 64 officers 

arrayed across 15 chat rooms engaged in a two-day command 

and control exercise. (The data and the exercise from which 

they were collected are described in Foltz, Lavoie, 

Oberbreckling, & Rosenstein 2008). 

 

 
Figure 2  Rank-Frequency plot of the inter-chat arrival 

intervals from the live C2 exercise. 

The linear plot on the log-log graph suggests a power-law 

distribution and using techniques we describe later, we have 

estimated a power-law exponent of ~2.44. Although this 

exponent differs from the value Barabasi reports (~1 for email 

exchanges) the overall communication pattern is qualitatively 

similar to those he describes. Rather than explain away the 

differences between email and chat communications we will 

instead focus on how we might recapitulate the general 

behavior in a task network model. In particular, we are 

interested in C3TRACE (cf. Plott, 2003), a task network 

modeling tool that was developed specifically to simulate the 

flow of information across command and control structures. 

The flow of information is represented as the exchange of 

messages of various types (e.g., e-mail, radio, written etc.) 

among the personnel in the command structure. The arrival of 

each message initiates the performance of various tasks which, 

in turn, drive predictions about performance along a variety of 

dimensions (e.g., time to completion, workload over time, 

message throughput etc). 

Clearly, the validity of those predictions depends in large 

part on correctly simulating the arrival intervals between 

messages. It is less clear is how to generate the underlying 

time series given the many degrees of freedom available to the 

C3TRACE modeler. At the most basic level, the modeler must 

decide whether the message traffic should be fixed as an input 

to the model (i.e., as a known sequence of events specified 

prior to run time) or whether the messages traffic will be 

generated at run time in response to other dynamics 

represented in the model. While the first approach can be used 

to replicate a given time series (and, hence, replicate the exact 

inter-message arrival intervals), it does so by eliminating one 

of the most interesting source of variability in the model—

namely the changing dynamics of the information flow. But if 

the modeler is to treat the information flow as an outcome of 

the model (rather than as an input) then the question becomes 

one of representing the right dynamics. 

Figure 1 Inter-event arrival intervals given a process 

governed by a power law (i.e., a “bursty” process) versus 

inter-event arrivals given a Poisson process. Barabasi (2005) 

provides a more detailed depiction of this difference. 



In our first attempt to model the live exercise that 

produced the chat data above, we hoped that the structural 

complexity of the command and control cell—64 operators in 

a many-to-many mapping to 15 chat rooms—would induce the 

“bursty” communication patterns. By representing the 

individual operators, each with a unique probability of 

replying to an incoming chat message, we expected that over 

time cascades of chat messages would emerge separated by 

long quiescent periods. While the model did just that, as 

Figure 3 shows, the rank-frequency plot of the simulated inter-

message arrival intervals (shown in Figure 4) did not closely 

resemble the empirical data. 

 

 
Figure 3 A C3TRACE simulation of inter-message arrival 

intervals. The graph depicts the time between consecutive 

messages. 

 
Figure 4 Rank-frequency plot of the inter-chat arrival 

intervals. The majority of the simulated inter-chat arrival 

intervals are well below a second and below the one-second 

resolution of the empirical data. We have not plotted the 

intervals of less than one second here. 

It was clear that simply recapitulating the structure of the 

chat rooms would not by itself engender power law behavior. 

Similarly, changing the mean task times and their variability 

did nothing to change the shape of the interval distribution. In 

short, the complexity of the model itself was not enough to 

simulate the complex dynamics of communicative behavior. 

For this reason, we returned to the literature to identify a 

more fundamental mechanism. Barabasi (2005) suggests that 

human communications patterns might be caused by a 

“queuing process” in which the human must continually 

decide which message to respond to next. The idea is that the 

human associates a priority with each message and, given a 

choice among messages on a to-do list, will likely respond to 

the highest priority message first. In fact, these complex 

dynamics will be present even if the human must only decide 

between answering a given message and doing something (i.e., 

anything) else (Vazquez, 2005). 

This minimal, two-task case is useful to the task network 

modeler insofar as it provides a template for representing 

dynamics where the salient inter-event intervals are task-based 

rather than queue-based. (In fact, it is not easy to represent a 

queue in which the priority-based sorting must be conditioned 

by a probabilistic threshold.) In the context of C3TRACE, this 

means we can generalize beyond the basic functionality of its 

priority-based message queues to represent a very generic and 

easily extensible priority-based task switching. Figure 5 

depicts the task network diagram of a single operator’s 

priority-based selection between two tasks.  

 

 
Figure 5 A generic two-task instantiation of Barabasi’s 

Priority List model in C3TRACE. 

There are two important features of the model: First, each 

instance of the two tasks (“A” and “B”) is initially assigned a 

real-valued priority between zero and one and a new priority is 

assigned only after a task has been executed. Thus a task with 

low-priority value is likely to result in a relatively longer wait 

time while multiple instances of the tasks with higher 

priorities are processed. Second, there is a threshold value, 

independent of the priority value, that determines whether the 

higher-priority task will, in fact, be executed. A threshold 

value of one entails that highest priority task is always done 

first while a threshold value of zero entails random selection 

between the two tasks. As the rank-frequency plots in Figure 6 

show, varying the threshold between these two extremes 

changes the likelihood of encountering extremely long wait 

times (even as the relative proportion of short wait times 

increases). 



 

  
Figure 6 Rank-frequency plots of the wait times in the two-task 

model given different threshold values. The plots mirror those 

of Vazquez (2005).  

The two task model above supports a straightforward 

extension to any fixed number of tasks and, unlike a queue-

based representation, does not depend on the representation of 

additional constraints to ensure that the queue remains exactly 

saturated to engender the right dynamics (Barabasi, 2005). 

The decision whether to represent human communicative 

behavior directly by way of a priority-based queue or more 

abstractly by way of priority-based task switching will depend 

on the preferences of the modeler, but the ability to generalize 

the task-switching approach to other human behaviors weighs 

in favor of the task-based approach. 

 

VALIDATING BEHAVIOR 

 

While it remains an open question whether “retro-fitting” 

a complex model with the simpler task-switching approach 

just described will produce the right kinds of communication 

patterns, there is a more pressing concern. Namely, how do we 

determine if the underlying process is truly governed by a 

power law and, if so, how do we to identify the form of the 

power law distribution. Clauset, Shalizi and Newman (2009) 

have argued that despite its widespread use, identifying and 

fitting power-law behavior on the basis of least squares 

regression on log-log plots is fraught with problems. Instead, 

they argue that power law exponents should be derived using a 

maximum likelihood estimator (MLE) before a confidence 

interval is calculated indicating how likely it is that the data 

would be better fit by a “random” power-law process.  

Estimating the smallest value (we refer to this as “x_min” 

below) for which a power law distribution holds is the first 

step in estimating the scaling index (i.e., the exponent) for the 

power law. Clauset et al. (2009) describe an iterative process 

for estimating that value. Each iteration starts with an estimate 

of x_min which is used to compute the complementary 

cumulative distribution function (CCDF) of the empirical data. 

The CCDF is determined by sorting the values from greatest 

to least and then simply computing the (complementary) 

percentile rank of each data point by dividing its rank in the 

sorted list by the total number of data points greater or equal 

to the estimated x_min value. We then estimate the scaling 

index of the empirical data given our initial estimate of x_min 

using the MLE techniques (Newman, 2005; Clauset et al., 

2009). Next, using the estimates for both x_min and scaling 

index, we compute the “theoretical” CCDF given the 

analytical solutions provided by Newman (2005). Finally, we 

determine the “distance” between these two CCDFs using the 

Kolmogorov-Smirnov (KS) statistic. In our cases, this distance 

is simply the greatest difference between percentile values of 

the empirical and theoretical CCDFs. The process repeats with 

each change in our estimate of x_min with the best estimate 

being the one that gives the lowest value (i.e., the least 

greatest value) for the KS-statistic. 

Clauset et al. (2009) also describe a method for generating 

a p-value for a power law fit to the data. The basic idea is to 

compare the fit of the empirical data to the fit that would be 

obtained with a true power law distribution, using the same 

MLE techniques. More precisely, using the values for x_min 

and scaling index estimated from the power-law fit to the 

empirical data, we generate a synthetic set of data of the same 

size as the empirical data set. The values less than x_min are 

sampled directly from the same region in the empirical data. 

The values greater than x_min are generated using the 

estimated scaling index and the transformation method 

(Newman, 2005). This produces a synthetic data set with a 

true power law distribution above x_min and a distribution 

that differs from the power law in the exact way that the 

empirical data does below x_min. We repeat this process, 

generating many synthetic data sets and fitting a power law to 

each one, using the same MLE techniques described 

previously.  If the empirical data set is plausibly power law in 

the region above x_min, then its KS-statistics should be in the 

same mix as those of the synthetic data sets. If the KS-distance 

is much larger than the range of synthetic KS-distances (i.e., 

its value falls in the tails), this indicates that the power law is 

not a good match to the empirical data. The proportion of 

synthetic data sets with KS-distances greater than that of the 

empirical data is the p-value. The lower the p-value, the less 

plausible it is that the empirical data are well-described by a 

power law. Higher p-values (above 0.1) mean a power law is 

fairly plausible. 

So, for example, looking at the empirical chat data, we 

estimate an x_min of 84 seconds and power-law exponent of 

~2.46 and a p-value of .65. Moreover, a similar fitting process 

to an exponential distribution yields a p-value of 0. Not only 

does this give us some reason to believe that the empirical chat 

data are the product of a power-law process, it also suggests a 

new approach for validating simulation data. Namely, 

assuming we have some confidence that both the empirical 

and simulated data are the result of power-law processes, we 

then simply compare the minimum values and power-law 

exponents. 

 

 

CONCLUSIONS 

 

Having implemented the methods advocated by Clauset et 

al. in C3TRACE, we have grown more confident that the 

human communication data discussed above are, in fact, the 

result of a power-law process, but this experience has taught 



us several important lessons. (Our initial estimates of an 

x_min of 84 seconds and power-law exponent of ~2.46 

produce a p-value of .65. Moreover, a similar fitting process to 

an exponential distribution yields a p-value of 0. While this 

suggests that a power-law fit is plausible, these results are only 

preliminary and a more thorough-going analysis is needed.) 

First, even the most seemingly basic dynamics of human 

performance in an organizational structure are likely to reveal 

“non-normal” statistics. But these are exactly the kinds of 

dependent measures we need to represent faithfully if our 

simulations of behaviors are to provide any insight into 

complex domains. For example, message throughput is one of 

the most basic measures we predict in a C3TRACE model so 

it is critical that we capture the “bursty” dynamics if that 

measure is to provide us insight into a communication flow. 

Second, these dynamics will resist the common 

representations we employ in our human performance 

modeling tools. It is easy to assume that a complex model (i.e., 

a model with many interacting operators and tasks) will yield 

accordingly complex dynamics. In our experience this wasn’t 

the case. In fact, we are currently moving in the opposite 

direction by searching for “minimal models” capable of 

producing complex dynamics. The task switching model 

described previously is just one example. We have also 

explored the generation of so-called “fractal” series from 

simple task network models where task times are the 

calculated by way of a moving average of past task times 

rather than the result of independent random draws. A single 

task model can thus generate a time series in which the 

standard deviation of inter-event intervals is positively 

correlated with the sample size of events (cf. 

Bassingthwaighte, Liebovitch & West, 1994). Clearly, the 

behavior engendered from even a simple model can be quite 

subtle and will often call for analytical techniques not usually 

considered by the human performance modeler. 

We view the work described above as progress toward 

these challenges. More than just one-off modeling and 

analysis efforts, we hope that the work we’ve described can be 

used as working examples for other human performance 

modelers trying to represent complex dynamics in task 

networks models. We also hope that the few points of contact 

we have identified in the network science literature point will 

serve as useful entry points for other human performance 

modelers. But more than that, working these issues has given 

us new perspective on some of the (occasionally bitter) 

debates regarding the status of power-law behaviors in 

cognitive science (cf. Heathcote, Brown & Mewhort, 2000). 

Rather than argue whether “the one true law” of cognitive 

science is worthy of the title, we now take a more agnostic 

view. If we are willing to countenance the mere possibility 

that some of the behaviors of complex systems (including 

cognitive systems) are governed by power-laws we must 

recognize that extreme events (e.g., extremely long wait times 

between messages) are far more likely in the context of 

complex dynamical systems than they are in systems that are 

characterized by “normal” statistics (West & Grigolini, 2011). 

Insofar as we rely on modeling and simulation to help us 

understand the bounds of performance, we are likely to 

develop overly optimistic predictions of system performance. 

Acknowledging the possibility of power law behaviors in 

human performance also has serious methodological 

implications. As Newman (2005) points out, when dealing 

with a process governed by sufficiently low power law 

exponents (like those claimed for many human behaviors), 

repeated measurements of that process will have neither a 

convergent mean nor variance. For this reason, standard 

measures of goodness of fit (e.g., RMSE, r
2
) are simply non-

starters for measures of model fit. Thus we will need new 

tools and techniques for validating whatever predictions we do 

make about the behavior of complex dynamical systems. 

Finally, although we have emphasized the influence of 

network science on our thinking about human performance 

modeling, the role of human performance modeling in 

network science is no less important. Indeed, no matter how 

powerful the statistical machinery might be, the network 

scientist still needs an anchor in an understandable account of 

human behavior; it is not enough to abstract the human away 

as a “particle” in a Hamiltonian system, or as the “server” for 

a priority-based queue. What is needed is a level of description 

in which detailed aspects of human performance can be 

reconciled with the statistics of complex dynamical behaviors. 

We would like to see our current efforts as a first step in that 

direction. 
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 (PDF) RDRL HRM AY    M BARNES 

  2520 HEALY AVE  

  STE 1172  BLDG 51005 

  FORT HUACHUCA AZ 85613-7069 

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) RDRL HRM AP    D UNGVARSKY 

  POPE HALL  BLDG 470  

  BCBL 806 HARRISON DR 

  FORT LEAVENWORTH KS 66027-2302 

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) RDRL HRM AT    J CHEN 

  12423 RESEARCH PKWY 

  ORLANDO FL 32826-3276 

  

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) RDRL HRM AT    C KORTENHAUS 

  12350 RESEARCH PKWY 

  ORLANDO FL 32826-3276  

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) RDRL HRM CU B LUTAS-SPENCER 

  6501 E 11 MILE RD  MS 284 

  BLDG 200A  2ND FL  RM 2104 

  WARREN MI 48397-5000 

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) FIRES CTR OF EXCELLENCE  

  FIELD ELEMENT 

  RDRL HRM AF    C HERNANDEZ 

  3040 NW AUSTIN RD RM 221 

  FORT SILL OK 73503-9043 

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) RDRL HRM AV    W CULBERTSON 

  91012 STATION AVE   

  FORT HOOD TX 76544-5073 

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) HUMAN RSRCH AND ENGRNG  

  DIRCTRT MCOE FIELD ELEMENT 

  RDRL HRM DW    C CARSTENS 

  6450 WAY ST 

  BLDG 2839 RM 310 

  FORT BENNING GA 31905-5400 

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) RDRL HRM DE    A MARES 

  1733 PLEASONTON RD  BOX 3 

  FORT BLISS TX 79916-6816 

 



 

 

NO. OF  

COPIES ORGANIZATION  

 

 

 8 ARMY RSCH LABORATORY – HRED 

 (PDF) SIMULATION & TRAINING 

  TECHNOLOGY CENTER 

  RDRL HRT    COL M CLARKE 

  RDRL HRT    I MARTINEZ 

  RDRL HRT T    R SOTTILARE 

  RDRL HRT B    N FINKELSTEIN 

  RDRL HRT G    A RODRIGUEZ 

  RDRL HRT I    J HART 

  RDRL HRT M    C METEVIER 

  RDRL HRT S    B PETTIT 

  12423 RESEARCH PARKWAY 

  ORLANDO FL 32826 

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) HQ USASOC 

  RDRL HRM CN    R SPENCER 

  BLDG E2929 DESERT STORM DRIVE 

  FORT BRAGG NC 28310 

 

 1 ARMY G1 

 (PDF) DAPE MR    B KNAPP 

  300 ARMY PENTAGON  RM 2C489 

  WASHINGTON DC 20310-0300 

 

 

ABERDEEN PROVING GROUND 

 

 15 DIR USARL 

 (PDF) RDRL HR 

   L ALLENDER 

   P FRANASZCZUK 

   C COSENZO 

  RDRL HRM 

   P SAVAGE-KNEPSHIELD 

  RDRL HRM AL 

   C PAULILLO 

  RDRL HRM B 

   C SAMMS 

  RDRL HRM C 

   L GARRETT 

  RDRL HRS 

   J LOCKETT 

  RDRL HRS B 

   M LAFIANDRA 

  RDRL HRS C 

   K MCDOWELL 

  RDRL HRS D 

   B AMREIN 

  RDRL HRS E 

   N BUCHLER 

   D HEADLEY 

   L MARUSICH 

   W WARWICK 

 



 

 

INTENTIONALLY LEFT BLANK. 


